Gametogenesis in the Chlamydomonas reinhardtii minus mating type is controlled by two genes, MID and MTD1.
نویسندگان
چکیده
In the unicellular algae Chlamydomonas reinhardtii, the plus and minus mating types are controlled by a complex locus, MT, where the dominant MID gene in the MT(-) locus has been shown to be necessary for expression of minus-specific gamete-specific genes in response to nitrogen depletion. We report studies on MID expression patterns during gametogenesis and on a second gene unique to the MT(-) locus, MTD1. Vegetative cells express basal levels of MID. An early activation of MID transcription after nitrogen removal, and its sequence similarity to plant RWP-RK proteins involved in nitrogen-responsive processes, suggest that Mid conformation/activity may be nitrogen sensitive. A second stage of MID upregulation correlates with the acquisition of mating ability in minus gametes. Knockdown of MTD1 by RNAi in minus strains results in a failure to differentiate into gametes of either mating type after nitrogen deprivation. We propose that intermediate Mid levels are sufficient to activate MTD1 transcription and to repress plus gamete-specific genes and that MTD1 expression in turn allows the threshold-level MID expression needed to turn on minus gamete-specific genes. We further propose that an MTD1-equivalent system, utilizing at least one gene product encoded in the MT(+) locus, is operant during plus gametogenesis.
منابع مشابه
Rapid evolution of sex-related genes in Chlamydomonas.
Biological speciation ultimately results in prezygotic isolation-the inability of incipient species to mate with one another-but little is understood about the selection pressures and genetic changes that generate this outcome. The genus Chlamydomonas comprises numerous species of unicellular green algae, including numerous geographic isolates of the species C. reinhardtii. This diverse collect...
متن کاملIdentification of the minus-dominance gene ortholog in the mating-type locus of Gonium pectorale.
The evolution of anisogamy/oogamy in the colonial Volvocales might have occurred in an ancestral isogamous colonial organism like Gonium pectorale. The unicellular, close relative Chlamydomonas reinhardtii has a mating-type (MT) locus harboring several mating-type-specific genes, including one involved in mating-type determination and another involved in the function of the tubular mating struc...
متن کاملMating type in Chlamydomonas is specified by mid, the minus-dominance gene.
Diploid cells of Chlamydomonas reinhardtii that are heterozygous at the mating-type locus (mt+/mt-) differentiate as minus gametes, a phenomenon known as minus dominance. We report the cloning and characterization of a gene that is necessary and sufficient to exert this minus dominance over the plus differentiation program. The gene, called mid, is located in the rearranged (R) domain of the mt...
متن کاملGenetic structure of the mating-type locus of Chlamydomonas reinhardtii.
Portions of the cloned mating-type (MT) loci (mt(+) and mt(-)) of Chlamydomonas reinhardtii, defined as the approximately 1-Mb domains of linkage group VI that are under recombinational suppression, were subjected to Northern analysis to elucidate their coding capacity. The four central rearranged segments of the loci were found to contain both housekeeping genes (expressed during several life-...
متن کاملInvestigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii
Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 176 2 شماره
صفحات -
تاریخ انتشار 2007